想要提升工作效率,我们就必须认真对待写工作总结这件事,工作总结能对自己的工作状况有一个更好地认识,以下是爱制作小编精心为您推荐的大数据个人工作总结5篇,供大家参考。
大数据个人工作总结篇1
时间如梭,新年的钟声即将敲响。20xx年将告别它的光辉,20xx年从容而至。在这个辞旧迎新之际,第一次尝试把自己在这一年来的行动用语言表达。下面我就做个简单的总结。
一、统计工作
1、每日做好生产一线职工的个人产量与次品数据的汇总与登记,并间断性地抽查相关数据是否准确;
2、每月汇总并公布职工的出勤、个人产量、次品等。做好产量月报表上报生产经理和财务部门,包括生产车间和包装车间;
3、每月月底进行一次彻底的盘库,主要有原材料、辅料、半成品、成品。整理分析数据后上交财务部等相关部门;
4、每月将生产部各种人员流动情况及考勤,奖罚,请假等数据汇总上报行政人事部;
5、协助人事部门招聘、登记求职人员信息,刊出宣传橱窗;
6、配合生产部发布和修改各类制度、通知、考核等;
7、自从公司实行免费餐以后,每日进行就餐人数统计;
8、年底将部分数据用表格的形式进行汇总与分析。主要有《年度原材料消耗表》、《年度生产表》、《年度成品包装产量表》。
二、20xx的工作计划
努力完成本职工作之余,学习更多有关财务、统计方面的知识,以提升自己专业学识。
积极参加一些和专业有关的培训,有效提高对统计数据的准确性,并做好数据的登记与分析。
三、总结经验与不足之处
20xx年,在原有的各种统计报表基础上,对一些没有实际意义的表格作了改进,并对统计数字的准确性进行了加强。但也存在着不少问题,尤为突出的是“食堂就餐人数的统计”问题。由于如今在厂职工按部门划分,人员变动情况很难在同一时间最准确地掌握,给每日的上报带来很大的麻烦。为此经过一系列的改进与调整,我们将专属部门专职人员上报签字认可,希望能够起到更准确更及时的统计。12月份最多统计人数相差了8人,为此我也做了检讨。有人反映人数统计方面存在问题,那是否职工产量也是如此。关于这个问题是我统计中的疏忽,但产量我可以大胆地说,不是的正确,却有99%的准确!工作中经常会出现这样那样的问题,我们要勇于正视错误,并且解决错误。有则改之,无则加勉!
回顾过去,20xx年是个不平凡的一年,是我职业生涯的一个重要转折点。宝光给了我锻炼的舞台,使我取得了不少的收益。这些成绩是离不开领导的信任和支持,离不开车间各道质检的共同努力。在此我要感谢各位对本人工作的支持!过去的成绩只能说明过去,未来的日子还是要靠我们共同的努力去实现。一份耕耘,一份收获,我相信宝光的未来会更加辉煌!
最后,衷心地祝愿各位领导和同事们新年快乐!
大数据个人工作总结篇2
工作以来,在项目部领导的关怀下,在同事的帮助下,我能尽心尽职,全身心的投入到工作中,尽自己的全力履行好统计员工作职责,刻苦钻研业务知识,努力提高理论知识和业务工作水平,并认真完成领导交给的各项工作任务。把自己多年来在学校所学到的书本经验应用在实践工作中,并能够严于律己,在同事的关心、支持和帮助下,思想、学习和工作等方面取得了新的进步,现工作总结如下:
一、主要工作情况:
1、强化理论和业务的学习。我重视加强理论和业务知识学习,在工作中,坚持一边工作一边学习,不断提高自身综合业务素质水平,认真学习工作业务知识,并结合自己在实际工作中存在的不足有针对性地进行学习,并且认真翻阅了《现场物资管理实施方案》,明确了统计员的工作职责。
2、在工作以来,我始终坚持严格要求自己,勤奋努力,时刻牢记在自己平凡而普通的工作岗位上,努力做好本职工作。在具体工作中,我努力做好领导交给的每一个工作,分清轻重缓急,科学安排时间,按时、按质、按量完成任务。
3、每天及时、准确按《采购合同》或《供货协议》的到货明细填写《材料物资统计表》和《成套设备统计表》;按照司机提供的到货清单认真填写《设备物资统计表》,将每天的到货情况输入到《二期扩建工程管理软件(p3系统)》,再将到货记录通过sql数据库软件的企业管理器导入到《中唐电现场物资管理系统(mis系统)》,并及时作好数据的备份。
4、每隔两天向计划设备部和工程部发送《设备物资统计表》;每周作好《现场物资周报》的统计工作;每个月将总到货车数和总物资重量与月到货车数和物资重量报给项目经理;并在月初将一个月的到货情况统计到《物资库存动态盘点表》,并存档。
5、在设备厂家和保管员确认设备无问题情况下,及时对照发票作入库单,将发票复印件存档,并作好《入库单记录明细》。
6、在作好统计工作之后,对项目部的电脑及网络进行定时维护,更新系统,更新修复被攻击的ie浏览器,扫描系统存在的漏洞并进行修补和安装补丁,定期对操作系统清理垃圾和作ghost备份;解决同事们在电脑上遇到的所有困难和存在的问题。
二、存在的不足
1、在工作中,虽然我不断加强理论知识的学习,努力使自己在各方面走向熟练,但由于自身学识、能力、思想、心理素质等的局限,导致在平时的工作中比较死板、心态放不开,工作起来束手束脚,对工作中的一些问题没有全面的理解与把握。同时由于个人不爱说话,与同事们尤其是领导的沟通和交流很少,工作目标不明确,并且遇到问题请教不多,没有做到虚心学习。
2、身为新时代的大学生,却没有青年人应有的朝气,学习新知识、掌握新东西不够。领导交办的事基本都能完成,但自己不会主动牵着工作走,很被动,而且缺乏工作经验,独立工作能力不足。在工作中不够大胆,总是在不断学习的过程中改变工作方法,而不能在创新中去实践,去推广。
3、由于进了大量的设备,有时没有及时统计到货情况,出现累积现像。对sql数据库软件没有作到按时备份。网络线路不规整没有及时进行处理。
这是我对这段时间工作的总结,说的不太多。但我认为用实际行动做出来更有说服力。所以在今后工作中我将努力奋斗,无论自己手头的工作有多忙,都服从公司领导的工作安排,遇到工作困难,及时与领导联系汇报,并寻找更好解决问题的办法,继续巩固现有成绩,针对自身的不足加以改进,争取
大数据个人工作总结篇3
一、数据量过大,数据中什么情况都可能存在。
如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。
二、软硬件要求高,系统资源占用率高。
对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过tb级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大cpu和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。
三、要求很高的处理方法和技巧。
这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。
下面我们来详细介绍一下处理海量数据的经验和技巧:
一、选用优秀的数据库工具
现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用oracle或者db2,微软公司最近发布的sqlserver性能也不错。另外在bi领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的etl工具和好的olap工具都十分必要,例如informatic,eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用sqlserver需要花费6小时,而使用sqlserver2005则只需要花费3小时。
二、编写优良的程序代码
处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。
三、对海量数据进行分区操作
对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如sqlserver的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘i/o,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。
四、建立广泛的索引
对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个etl流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。
五、建立缓存机制
当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/buffer,这对于这个级别的数据量是可行的。
六、加大虚拟内存
如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1gb,1个p42.4g的cpu,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096m的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为4096*6+1024=25600m,解决了数据处理中的内存不足问题。
七、分批处理
海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。
八、使用临时表和中间表
数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。
九、优化查询sql语句
在对海量数据进行查询处理过程中,查询的sql语句的性能对查询效率的影响是非常大的,编写高效优良的sql脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对sql语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。
十、使用文本格式进行处理
对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。
十一、定制强大的清洗规则和出错处理机制
海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等,这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。
十二、建立视图或者物化视图
视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘i/o,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。
十三、避免使用32位机子(极端情况)
目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。
十四、考虑操作系统问题
海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。
十五、使用数据仓库和多维数据库存储
数据量加大是一定要考虑olap的,传统的报表可能5、6个小时出来结果,而基于cube的查询可能只需要几分钟,因此处理海量数据的利器是olap多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。
十六、使用采样数据,进行数据挖掘
基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误差为千分之五,客户可以接受。
还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。
海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。
大数据个人工作总结篇4
一缕春风溢满了我们数据部每角落,不知不觉中已经来我们公司有一年多了,我任职数据部一名数据统计员,每一项工作都与业务部有相连,跟进业务部日常行程、每天销售业绩、发生意销售、目标及占比跌幅店铺信息、物料赞助跟进等等就是我的工作。在婷姐的带领下和诸位同事的合作中学到很多东西,慢慢的全面把握了公司的数据准确性和保密性,这对我的职业生涯具有非凡意义,使我打下了坚实的基础。
回顾这一年多时间,工作经验、社会交流等等一切都是从头开始,从无到有,从有到会,从会到熟;这一过程都离不开公司领导的带领和个人的努力,这一年是感恩的一年,真心感谢公司给我提供磨练自己的机会,更感谢公司领导一直以来对我的信任与栽培! 渐渐的,我体会到和摸索出一些总结和感想。
总结: 一.团队的合作是完成工作的前提。做一份能令领导满意的数据表格不单单是自己一个人闭门造车所能造出来的,需要合理的意见和适当的帮助,自己的制表思路是要在前人的启发下才能发挥出色。
二.精准的数据需要懂得数据的理念和要求,数据的运用。做数据表格是给人一种一目了然的清晰感,怎样把公司的数据信息及时传达公司领导、客户及客户主任尤为重要。准确的数据表格是给领导和客户的第一印象,是直接影响整份表格的进度。信息是及时、全面反映整个企业的精神面貌和工作动态,这就要求及时,迅速,对各部门上报的信息进行整理、加工,对发生的大事对各部门进行催报,使信息管理工作更加规范到位。
三.善于总结,懂得吸取经验。经验是在实际工作在中得到的,把握了经验工作自然就是事半功倍。刚开始做数据表格时,只知道一味的按部就班,缺少灵活性,表格表达不清晰。后来经过不断的摸索,领悟到表格有很多功能是值得我们去参谋的,运用vlookup,sumif等常用公式,让自己变得灵活而具有战斗力。表达最美的效果,这种感觉是要在长期的工作经验中积累起来的。
四.善于沟通,避免出错。做数据表格是在第一份原始资料的基础上做出来的,第一份原始资料就是小马做的数据报表,做数据时遇到什么不明白的需请教,因此信息传递是很重要的,我们要保持信息的畅通性就必须善于沟通,否则出现差错,前功尽弃。所以,一边工作一边总结经验是百利而无一害的。 五.做数据表格要讲究效率和准确。数据的作用是给他人能够更快的看清楚所表达的数据内容,还有重要的是数据准确性及美观,给人一种赏心悦目,心旷神怡的舒服感,具有挑战性的是有一种感觉,就是一眼就分辨得出哪里好,哪里需要改进,哪里需要取。
感想: 一:数据部是实现自己理想和展现自己技能的平台。能把自己所学知识运用出来是一件值得庆幸的事,安分守己,把自己的工作出色完成对公司是一种责任,对自己是一种交代。
二.认识了很多新同事,交流广泛,知识面丰富了。新的环境必然有新的事物,接收新的事物必然有新的认识,新的认识必然有新的数据理念思想,对自己的专业知识和认识更上一层楼。
三.去旧迎新,迎接新的挑战,自我提升,给自己定下目标。20xx年是奋斗的一年,一年可以实现很多事情,可以改变很多事情,是选择继续奋斗还是碌碌无为,关键在于自己的行动。只有行动万事皆成事实。
所以我给自己定下了三个目标:1.全面提升自己,工作能独当一面。这样就能提高工作效率,不会延误工作进度。
2数据能精确化,提高效率。
3.保持一颗上进心,永不熄灭。
最后,祝愿大家新春如意,事业有成,开开心心过一个好年。
大数据个人工作总结篇5
一年来,企业数据统计工作在地方领导的关怀下,认真贯彻执行《_法》和统计规章制度,经过全体统计工作者的积极努力、辛勤工作,较好地完成了统计工作任务。下面总结下20__年从事数据文员的工作:
一、一年来度统计工作开展情况
1、逐步建立健企业统计规章制度,加强统计管理工作
为保证《_法》及其《_》的贯彻实施,结合我企业实际,有力地促进了统计工作的制度化建设,使企业统计工作基本做到了有法可依、有章可循统计工作者依法统计意识不断增强。企业统计工作逐步向规范化方面发展,基本做到了“专业实施、归口管理”。
2、加强统计基础工作建设,提高统计工作水平
一是不断建立健全企业统计规章制度,规范统计工作程序,严格落实统计人员岗位责任制,保证统计数据的准确性、及时性和全面性。
二是加强统计人员队伍建设,提高统计人员素质。
三是加强基层信息质量考核,统计检查时重点检查基层原始记录、统计基础台帐、统计资料的管理、统计数据是否真实准确,促进了统计资料积累的制度化、规范化和标准化。
3、加强统计执法检查,努力提高统计数据质量
根据统计工作的要求和企业《_办法》的规定,在全企业范围内开展了统计工作执法大检查。统计部门就统计工作开展与执行情况进行了认真自查,自查率达100%;统计部门对本专业基层统计工作进行抽查,并将检查报告和检查表报企业企管部。通过统计大检查,进一步贯彻了《_法》及其《_》,较好地执行了企业的统计工作管理办法,提高了统计人员依法统计的意识,促进了基层统计基础工作的规范化,从源头上保证统计数据的质量,推动了企业统计工作的发展和提高。
二、当前统计工作中存在的问题和不足
在一年来统计工作中,虽然取得了一些成绩,但我们工作中还有很多不尽人意之处,当前搞好统计工作,还存在着以下一些问题和困难:
1、对统计工作的认识不足、重视不够。一些人认为统计工作可有可无,统计数字可以马虎对付。这种思想势必影响统计工作的进一步开展,进而给企业经营生产带来负面影响。
2、统计归口管理职能仍需加强。归口管理的职能虽然在逐步加强,但由于长期以来各专业统计各自上报,缺乏沟通,数出多门,造成同一统计指标出现多个数据的混乱局面。
3、统计执法检查力度有待加强。近一年,企业虽然按统计规章进行了统计执法检查工作,但由于思想上对统计工作的重视不够,统计自查流于形式,走走过场;加之组成检查组需抽调相关部门人员,牵涉面大,致使统计抽查工作不能全面展开,局限在狭小范围,不利于统计工作的正常开展。
三、意见和建议
1、希望企业加强对统计工作方面的业务指导。加强信息交流,取长补短,以推动企业统计工作的全面提高。
2、希望企业通过开办数据统计分析培训班、组织统计工作经验交流会等多种形式培训统计人员,以提高统计人员对统计资料的分析能力,使统计工作更好地为企业生产经营服务。
大数据个人工作总结5篇相关文章: